The number of steps and the type of techniques used in the process of creating pipeline-quality natural gas most often depends upon the source and makeup of the wellhead production stream. In some cases, several of the steps shown in Figure 1 may be integrated into one unit or operation, performed in a different order or at alternative locations (lease/plant), or not required at all. Among the several stages (as lettered in igure 1) of gas processing/treatment are:
A) Gas-Oil Separators: In many instances pressure relief at the wellhead will cause a natural separation of gas from oil (using a conventional closed tank, where gravity separates the gas hydrocarbons from the heavier oil). In some cases, however, a multi-stage gas-oil separation process is needed to separate the gas stream from the crude oil. These gas-oil separators are commonly closed cylindrical shells, horizontally mounted with inlets at one end, an outlet at the top for removal of gas, and an outlet at the bottom for removal of oil. Separation is accomplished by alternately heating and cooling (by compression) the flow stream through multiple steps. Some water and condensate, if present, will also be extracted as the process proceeds.
B) Condensate Separator: Condensates are most often removed from the gas stream at the wellhead through the use of mechanical separators. In most instances, the gas flow into the separator comes directly from the wellhead, since the gas-oil separation process is not needed. The gas stream enters the processing plant at high pressure (600 pounds per square inch gauge (psig) or greater) through an inlet slug catcher where free water is removed from the gas, after which it is directed to a condensate separator. Extracted condensate is routed to on-site storage tanks.
C) Dehydration: A dehydration process is needed to eliminate water which may cause the formation of hydrates. Hydrates form when a gas or liquid containing free water experiences specific temperature/pressure conditions. Dehydration is the removal of this water from the produced natural gas and is accomplished by several methods. Among these is the use of ethylene glycol (glycol injection) systems as an absorption* mechanism to remove water and other solids from the gas stream. Alternatively, adsorption* dehydration may be used, utilizing dry-bed dehydrators towers, which contain desiccants such as silica gel and activated alumina, to perform the extraction.
D) Contaminant Removal: Removal of contaminates includes the elimination of hydrogen sulfide, carbon dioxide, water vapor, helium, and oxygen. The most commonly used technique is to first direct the flow though a tower containing an amine solution. Amines absorb sulfur compounds from natural gas and can be reused repeatedly. After desulphurization, the gas flow is directed to the next section, which contains a series of filter tubes. As the velocity of the stream reduces in the unit, primary separation of remaining contaminants occurs due to gravity. Separation of smaller particles occurs as gas flows through the tubes, where they combine into larger particles which flow to the lower section of the unit. Further, as the gas stream continues through the series of tubes, a centrifugal force is generated which further removes any remaining water and small solid particulate matter.
E) Nitrogen Extraction: Once the hydrogen sulfide and carbon dioxide are processed to acceptable levels, the stream is routed to a Nitrogen Rejection Unit (NRU), where it is further dehydrated using molecular sieve beds. In the NRU, the gas stream is routed through a series of passes through a column and a brazed aluminum plate fin heat exchanger. Using thermodynamics, the nitrogen is cryogenically separated and vented. Another type of NRU unit separates methane and heavier hydrocarbons from nitrogen using an absorbent* solvent. The absorbed methane and heavier hydrocarbons are flashed off from the solvent by reducing the pressure on the processing stream in multiple gas decompression steps. The liquid from the flash regeneration step is returned to the top of the methane absorber as lean solvent. Helium, if any, can be extracted from the gas stream in a Pressure Swing Adsorption (PSA) unit.
F) Methane Separation: The process of demethanizing the gas stream can occur as a separate operation in the gas plant or as part of the NRU operation. Cryogenic processing and absorption methods are some of the ways to separate methane from NGLs. The cryogenic method is better at extraction of the lighter liquids, such as ethane, than is the alternative absorption method. Essentially, cryogenic processing consists of lowering the temperature of the gas stream to around -120 degrees Fahrenheit. While there are several ways to perform this function the turbo expander process is most effective, using external refrigerants to chill the gas stream. The quick drop in temperature that the expander is capable of producing condenses the hydrocarbons in the gas stream, but maintains methane in its gaseous form.The absorption* method, on the other hand, uses a “lean” absorbing oil to separate the methane from the NGLs. While the gas stream is passed through an absorption tower, the absorption oil soaks up a large amount of the NGLs. The “enriched” absorption oil, now containing NGLs, exits the tower at thebottom. The enriched oil is fed into distillers where the blend is heated to above the boiling point of the NGLs, while the oil remains fluid. The oil is recycled while the NGLs are cooled and directed to a fractionator tower. Another absorption method that is often used is the refrigerated il absorption method where the lean oil is chilled rather than heated, a feature that enhances recovery rates somewhat.
G) Fractionation: Fractionation, the process of separating the various NGLs present in the remaining gas stream, uses the varying boiling points of the individual hydrocarbons in the stream, by now virtually all NGLs, to achieve the task. The process occurs in stages as the gas stream rises through several towers where heating units raise the temperature of the stream, causing the various liquids to separate and exit into specific holding tanks.
* Adsorption is the binding of molecules or particles to the surface of a material, while absorption is the filling of the pores in a solid. The binding to the surface is usually weak with adsorption, and therefore, usually easily reversible.
A) Gas-Oil Separators: In many instances pressure relief at the wellhead will cause a natural separation of gas from oil (using a conventional closed tank, where gravity separates the gas hydrocarbons from the heavier oil). In some cases, however, a multi-stage gas-oil separation process is needed to separate the gas stream from the crude oil. These gas-oil separators are commonly closed cylindrical shells, horizontally mounted with inlets at one end, an outlet at the top for removal of gas, and an outlet at the bottom for removal of oil. Separation is accomplished by alternately heating and cooling (by compression) the flow stream through multiple steps. Some water and condensate, if present, will also be extracted as the process proceeds.
B) Condensate Separator: Condensates are most often removed from the gas stream at the wellhead through the use of mechanical separators. In most instances, the gas flow into the separator comes directly from the wellhead, since the gas-oil separation process is not needed. The gas stream enters the processing plant at high pressure (600 pounds per square inch gauge (psig) or greater) through an inlet slug catcher where free water is removed from the gas, after which it is directed to a condensate separator. Extracted condensate is routed to on-site storage tanks.
C) Dehydration: A dehydration process is needed to eliminate water which may cause the formation of hydrates. Hydrates form when a gas or liquid containing free water experiences specific temperature/pressure conditions. Dehydration is the removal of this water from the produced natural gas and is accomplished by several methods. Among these is the use of ethylene glycol (glycol injection) systems as an absorption* mechanism to remove water and other solids from the gas stream. Alternatively, adsorption* dehydration may be used, utilizing dry-bed dehydrators towers, which contain desiccants such as silica gel and activated alumina, to perform the extraction.
D) Contaminant Removal: Removal of contaminates includes the elimination of hydrogen sulfide, carbon dioxide, water vapor, helium, and oxygen. The most commonly used technique is to first direct the flow though a tower containing an amine solution. Amines absorb sulfur compounds from natural gas and can be reused repeatedly. After desulphurization, the gas flow is directed to the next section, which contains a series of filter tubes. As the velocity of the stream reduces in the unit, primary separation of remaining contaminants occurs due to gravity. Separation of smaller particles occurs as gas flows through the tubes, where they combine into larger particles which flow to the lower section of the unit. Further, as the gas stream continues through the series of tubes, a centrifugal force is generated which further removes any remaining water and small solid particulate matter.
E) Nitrogen Extraction: Once the hydrogen sulfide and carbon dioxide are processed to acceptable levels, the stream is routed to a Nitrogen Rejection Unit (NRU), where it is further dehydrated using molecular sieve beds. In the NRU, the gas stream is routed through a series of passes through a column and a brazed aluminum plate fin heat exchanger. Using thermodynamics, the nitrogen is cryogenically separated and vented. Another type of NRU unit separates methane and heavier hydrocarbons from nitrogen using an absorbent* solvent. The absorbed methane and heavier hydrocarbons are flashed off from the solvent by reducing the pressure on the processing stream in multiple gas decompression steps. The liquid from the flash regeneration step is returned to the top of the methane absorber as lean solvent. Helium, if any, can be extracted from the gas stream in a Pressure Swing Adsorption (PSA) unit.
F) Methane Separation: The process of demethanizing the gas stream can occur as a separate operation in the gas plant or as part of the NRU operation. Cryogenic processing and absorption methods are some of the ways to separate methane from NGLs. The cryogenic method is better at extraction of the lighter liquids, such as ethane, than is the alternative absorption method. Essentially, cryogenic processing consists of lowering the temperature of the gas stream to around -120 degrees Fahrenheit. While there are several ways to perform this function the turbo expander process is most effective, using external refrigerants to chill the gas stream. The quick drop in temperature that the expander is capable of producing condenses the hydrocarbons in the gas stream, but maintains methane in its gaseous form.The absorption* method, on the other hand, uses a “lean” absorbing oil to separate the methane from the NGLs. While the gas stream is passed through an absorption tower, the absorption oil soaks up a large amount of the NGLs. The “enriched” absorption oil, now containing NGLs, exits the tower at thebottom. The enriched oil is fed into distillers where the blend is heated to above the boiling point of the NGLs, while the oil remains fluid. The oil is recycled while the NGLs are cooled and directed to a fractionator tower. Another absorption method that is often used is the refrigerated il absorption method where the lean oil is chilled rather than heated, a feature that enhances recovery rates somewhat.
G) Fractionation: Fractionation, the process of separating the various NGLs present in the remaining gas stream, uses the varying boiling points of the individual hydrocarbons in the stream, by now virtually all NGLs, to achieve the task. The process occurs in stages as the gas stream rises through several towers where heating units raise the temperature of the stream, causing the various liquids to separate and exit into specific holding tanks.
* Adsorption is the binding of molecules or particles to the surface of a material, while absorption is the filling of the pores in a solid. The binding to the surface is usually weak with adsorption, and therefore, usually easily reversible.